
Cryptanalysis of Microsoft’s PPTP
Authentication Extensions (MS-CHAPv2)

Bruce Schneier Mudge
Counterpane Systems L0pht Heavy Industries

schneier@counterpane.com mudge@l0pht.com

David Wagner
UC Berkeley

daw@cs.berkeley.edu

September 12, 1999

Abstract

The Point-to-Point Tunneling Protocol (PPTP) is used to secure PPP
connections over TCP/IP link. In response to [SM98], Microsoft released
extensions to the PPTP authentication mechanism (MS-CHAP), called
MS-CHAPv2. We present an overview of the changes in the authentica-
tion and encryption-key generation portions of MS-CHAPv2, and assess
the improvements and remaining weaknesses in Microsoft’s PPTP imple-
mentation.

1 Introduction

The Point-to-Point Tunneling Protocol (PPTP) [HP+97] is a protocol that al-
lows Point-to-Point Protocol (PPP) connections [Sim94] to be tunneled through
an IP network, creating a Virtual Private Network (VPN). Microsoft has imple-
mented its own algorithms and protocols to support PPTP. This implementation
of PPTP, called Microsoft PPTP, is used extensively in commercial VPN prod-
ucts precisely because it is already a part of the Microsoft Windows 95, 98, and
NT operating systems.

The authentication protocol in Microsoft PPTP is the Microsoft Challenge
/ Reply Handshake Protocol (MS-CHAP) [ZC98]; the encryption protocol is
Microsoft Point to Point Encryption (MPPE) [PZ98]. After Microsoft’s PPTP
was cryptanalyzed [SM98] and significant weaknesses were publicized, Microsoft
upgraded their protocols [Zor98a, Zor98b, Zor99]. The new version is called
MS-CHAP version 2 (MS-CHAPv2); the older version has been renamed as
MS-CHAP version 1 (MS-CHAPv1). MS-CHAPv2 is available as an upgrade

1



for Microsoft Windows 95, Windows 98, and Windows NT 4.0 (DUN 1.3)
[Mic98a, Mic98b]. Even though this upgrade is available, we believe that most
implementation of PPTP use MS-CHAPv1.

This paper examines MS-CHAPv2 and discusses how well it addresses the
security weaknesses outlined in [SM98].

The most significant changes from MS-CHAPv1 to MS-CHAPv2 are:

• The weaker LAN Manager hash is no longer sent along with the stronger
Windows NT hash. This is to prevent automatic password crackers like
L0phtcrack [L99] from first breaking the weaker LAN Manager hash and
then using that information to break the stronger NT hash [L97].

• An authentication scheme for the server has been introduced. This is to
prevent malicious servers from masquerading as legitimate servers.

• The change password packets from MS-CHAPv1 have been replaced by
a single change password packet in MS-CHAPv2. This is to prevent the
active attack of spoofing MS-CHAP failure packets.

• MPPE uses unique keys in each direction. This is to prevent the trivial
cryptanalytic attack of XORing the text stream in each direction to remove
the effects of the encryption [SM98].

These changes do correct the major security weaknesses of the original proto-
col: the inclusion of the LAN Manager hash function and the use of the same
OFB encryption key multiple times. However, many security problems are still
unaddressed: e.g., how the client protects itself, the fact that the encryption
key has the same entropy as the user’s password, and the fact that enough data
is passed on the wire to allow attackers to mount crypt-and-compare attacks.

This being said, Microsoft obviously took this opportunity to not only fix
some of the major cryptographic weaknesses in their implementation of PPTP,
but also to improve the quality of their code. The new version is much more
robust against denial-of-service style attacks and no longer leaks information
regarding the number of active VPN sessions.

2 MS-CHAP, Versions 1 and 2

The MS-CHAPv1 challenge/response mechanism was described in [SM98]. It
consists of the following steps:

1. Client requests a login challenge from the Server.

2. The Server sends back an 8-byte random challenge.

3. The Client uses the LAN Manager hash of its password to derive three
DES keys. Each of these keys is used to encrypt the challenge. All three
encrypted blocks are concatenated into a 24-byte reply. The Client cre-
ates a second 24-byte reply using the Windows NT hash and the same
procedure.

2



4. The server uses the hashes of the Client’s password, stored in a database,
to decrypt the replies. If the decrypted blocks match the challenge, the
authentication completes and sends a “success” packet back to the client.

This exchange has been modified in MS-CHAPv2. The following is the
revised protocol:

1. Client requests a login challenge from the Server.

2. The Server sends back a 16-byte random challenge.

3a. The Client generates a random 16-byte number, called the “Peer Authen-
ticator Challenge.”

3b. The Client generates an 8-byte challenge by hashing the 16-byte challenge
received in step (2), the 16-byte Peer Authenticator Challenge generated
in step (3a), and the Client’s username. (See Section 3 for details.)

3c. The Client creates a 24-byte reply, using the Windows NT hash function
and the 8-byte challenge generated in step (3b). This process is identical
to MS-CHAPv1.

3d. The Client sends the Server the results of steps (3a) and (3c).

4a. The Server uses the hashes of the Client’s password, stored in a database,
to decrypt the replies. If the decrypted blocks match the challenge, the
Client is authenticated.

4b. The Server uses the 16-byte Peer Authenticator Challenge from the client,
as well as the Client’s hashed password, to create a 20-byte “Authenticator
Response.” (See Section 5 for details.)

5. The Client also computes the Authenticator Response. If the computed
response matches the received response, the Server is authenticated.

A general description of the changes between MS-CHAPv1 and MS-CHAPv2
is given in Figure 1. This protocol works, and eliminates the most serious
weaknesses that plagued MS-CHAPv1. In MS-CHAPv1, two parallel hash val-
ues were sent from the Client to the Server: the LAN Manager hash and the
Windows NT hash. These were two different hashes of the same User password.
The LAN Manager hash is a much weaker hash function, and password-cracker
programs such as L0phtcrack were able to break the LAN Manager hash and
then use that information to break the Windows NT hash [L97]. By eliminating
the LAN Manager hash in MS-CHAPv2, Microsoft has made this divide-and-
conquer attack impossible. Still, the security of this protocol is based on the
password used, and L0phtcrack can still break weak passwords using a dictio-
nary attack [L99].

As we will discuss later, multiple layers of hashing are used in the different
steps of MS-CHAPv2. While this hashing serves to obscure some of the values,

3



MS-CHAP Version 1 MS-CHAP Version 2
Negotiates CHAP with an algorithm
value of 0x80.

Negotiates CHAP with an algorithm
value of 0x81.

Server sends an 8-byte challenge
value.

Server sends a 16-byte value to be
used by the client in creating an 8-
byte challenge value.

Client sends 24-byte LANMAN and
24-byte NT response to 8-byte chal-
lenge.

Client sends 16-byte peer challenge
that was used in creating the hidden
8-byte challenge, and the 24-byte NT
response.

Server sends a response stating SUC-
CESS or FAILURE.

Server sends a response stating SUC-
CESS or FAILURE and piggybacks
an Authenticator Response to the
16-byte peer challenge.

Client decides to continue or end
based upon the SUCCESS or FAIL-
URE response above.

Client decides to continue or end
based upon the SUCCESS or FAIL-
URE response above. In addition,
the Client checks the validity of the
Authenticator Response and discon-
nects if it is not the expected value.

Figure 1: Some basic differences between MSCHAPv1 and MSCHAPv2 authen-
tication

it is unclear what the cryptographic significance of them are. All they seem to
do is to slow down the execution of the protocol.

We also have concerns over the amount of control the client has in the
influence of the ultimate 8-byte challenge that is used, though we have not yet
been able to come up with a viable attack to exploit this. Certainly it opens
the possibility of subliminal channels, which can be exploited in other contexts.

3 MS-CHAPv2: Deriving the 8-byte Challenge
for the 24-byte Response

In MS-CHAPv1, the Server sends the Client an 8-byte random challenge. This
challenge is used, together with the Client’s password and a hash function, to
create a pair of 24-byte responses.

In MS-CHAPv2, the Server sends the Client a 16-byte challenge. This chal-
lenge is not used by the Client directly; the Client derives an 8-byte value from
this 16-byte challenge. The derivation process is as follows:

1. The Client creates a 16-byte random number, called the Peer Authentica-
tor Challenge.

4



2. The Client concatenates the Peer Authenticator Challenge with the 16-
byte challenge received from the server and the Client’s username.

3. The client hashes the result with SHA-1 [NIST93].

4. The first eight bytes of the hash become the 8-byte challenge.

It is these 8 bytes that the Client will use to encrypt the 16-byte local pass-
word hash (using the Windows NT hash function) to obtain the 24-byte re-
sponse, which the Client will send to the server. This method is identical to
MS-CHAPv1, and has been described in [SM98].

3.1 Analysis

It is unclear to us why this protocol is so complicated. At first glance, it seems
reasonable that the Client not use the challenge from the Server directly, since
it is known to an eavesdropper. But instead of deriving a new challenge from
some secret information—the password hash, for example—the Client uses a
unique random number that is sent to the Server later in the protocol. There
is no reason why the Client cannot use the Server’s challenge directly and not
use the Peer Authenticator Challenge at all.

4 MS-CHAPv2: Deriving the 24-byte Response

Both MS-CHAPv1 and MS-CHAPv2 use the same procedure to derive a 24-byte
response from the 8-byte challenge and the 16-byte NT password hash:

1. The 16-byte NT hash is padded to 21 bytes by appending five zero bytes.

2. Let X,Y, Z be the three consecutive 7-byte blocks of this 21-byte value,
and let C be the 8-byte challenge. The 24-byte response R is calculated
as R = 〈DESX(C),DESY (C),DESZ(C)〉.

4.1 Analysis

This complicated procedure creates a serious weakness in the MS-CHAP proto-
cols: it allows the attacker to speed up dictionary keysearch by a factor of 216,
which is a pretty devastating effect given the relatively low entropy of most user
passwords.

Suppose that we eavesdrop on a MS-CHAP connection. The response R
is exposed in the clear, and the challenge C may be derived easily from public
information. We will attempt to recover the password, using the knowledge that
many passwords are closely derived from dictionary words or otherwise readily
guessable.

Note first that the value of Z can be easily recovered: since there are only 216

possibilities for Z, and we have a known plaintext-ciphertext pair C,DESZ(C)

5



for Z, we may try each of the possibilities for Z in turn with a simple trial
encryption1. This discloses the last two bytes of the NT hash of the password.

We will use this observation to speed up dictionary search. In a one-time
precomputation, we hash each of our guesses at the password (perhaps as minor
variations on a list of words in a dictionary). We sort the results by the last two
bytes of their hash and burn this on a CD-ROM (or a small hard drive). Then,
when we see a MS-CHAP exchange, we may recover the last two bytes of the
NT hash (using the method outlined above) and examine all the corresponding
entries on the CD-ROM. This gives us a list of plausible passwords which have
the right value for the last two bytes of their NT hash; then we can try each of
those possibilities by brute force.

Suppose a naive dictionary attack would search N passwords. In our attack,
we try only the passwords which have the right value for the last two bytes of
their NT hash, so we expect to try only about N/216 passwords. This implies
that the optimized attack runs about 216 times faster than a standard dictio-
nary attack, if we can afford the space to store a precomputed list of possible
passwords.

This attack is applicable to both MS-CHAPv1 and MS-CHAPv2. How-
ever, the weakness is much more important for MS-CHAPv2, because for MS-
CHAPv1 it is easier to attack the LanManager hash than to attack the NT
hash.

This is a serious weakness which could have been easily avoided merely by
using a standard cryptographic hashing primitive. For instance, merely gener-
ating the response as R = SHA-1(NT hash, C) would be enough to prevent this
attack.

Note also that the MS-CHAP response generation algorithm is also a weak
link, even when passwords contain adequate entropy. It is clear that the NT
hash can be recovered with just two DES exhaustive keysearches (about 256

trial DES decryptions on average), or in just 9 days using a single EFF DES
Cracker machine [Gil98]. Once the NT hash is recovered, all encrypted sessions
can be read and the authentication scheme can be cracked with no effort. This
shows that, even when using 128-bit RC4 keys, the MS-CHAP protocol provides
at most the equivalent of 57-bit security2. This weakness could also have been
avoided by the simple change suggested above, R = SHA-1(NT hash, C).

It is not clear to us why the MS-CHAPv2 designers chose such a complicated
and insecure algorithm for generating 24-byte responses, when a simpler and
more secure alternative was available.

1This has been independently observed by B. Rosenburg.
2This has been independently observed by P. Holzer.

6



5 MS-CHAPv2: Deriving the 20-byte Authen-
ticator Response

In MS-CHAPv2, the Server sends the Client a 20-byte Authenticator Response.
The Client calculates the same value, and then compares it with the value
received from the Server in order to complete the mutual authentication process.
This value is created as follows:

1. The Server (or the Client) hashes the 16-byte NT password hash with
[Riv91] to get password-hash-hash. (The Server stores the clients password
hashed with MD4; this is the NT password hash value.)

2. The Server then concatenates the password-hash-hash, the 24-byte NT
response, and the literal string “Magic server to client constant”, and
then hashes the result with SHA.

3. The Server concatenates the 20-byte SHA output from step (2), the initial
8-byte generated challenge (see Section 3) and the literal string “Pad to
make it do more than one iteration”, and then hashes the result with SHA.

The resulting 20 bytes are the mutual authenticator response.

5.1 Analysis

Again, this process is much more complicated than required. There is no reason
to use SHA twice; a single hashing has the same security properties.

6 Analysis of MS-CHAPv2

We do not know why Microsoft chose such a complicated protocol, since this is
not stronger than the following:

1. The Server sends the Client an 8-byte challenge.

2. The Client encrypts the 16-byte local password hash with an 8-byte chal-
lenge and sends the Server the 24-byte response, an 8-byte challenge of its
own, and the username.

3. The Server sends a pass/fail packet with a 24-byte response to the Client’s
challenge, which is the user’s password-hash-hash encrypted with the
Client’s 8-byte challenge.

The downside to the MS-CHAPv2 protocol is that an eavesdropper can obtain
two copies of the same plaintext, encrypted with two different keys. However,
in the current model, watching the network for any length of time will still give
you multiple copies of a user challenge/response as the user logs in and out,
which will be encrypted with different keys.

7



As it stands, a passive listener is still able to get the 8-byte challenge and the
24-byte response from the information sent. The popular hacker tool L0phtcrack
[L97], which breaks Windows NT passwords, works with this data as input. This
task was much easier with MS-CHAPv1, since the weaker LAN Manager hash
was sent alongside the stronger Windows NT hash; L0phtcrack first broke the
former and then used that information to break the latter [L99]. L0phtcrack
can still break most common passwords from the Windows NT hash alone [L97].
And this still does not solve the problem of using the user’s hash for MPPE
keying, PPTP authentication, etc. without negotiating, at least, machine public
key/private key methods of exchanging such an important key.

6.1 Version Rollback Attacks

Since Microsoft has attempted to retain some backwards compatibility with
MS-CHAPv1, it is possible for an attacker to mount a “version rollback attack”
against MS-CHAP. In this attack, the attacker convinces both the Client and
the Server not to negotiate the more secure MS-CHAPv2 protocol, but to use
the less secure MS-CHAPv1 protocol.

In its documentation, Microsoft claims that the operating systems will try
to negotiate MS-CHAPv2 first, and only drop back to MS-CHAPv1 if the first
negotiation fails [Mic99]. Additionally, it is possible to set the Server to require
MS-CHAPv2. We find this scenario implausible for two reasons. One, the
software switches to turn off backwards compatibility are registry settings, and
can be difficult to find. And two, since older versions of Windows cannot support
MS-CHAPv2, backwards compatibility must be turned on if there are any legacy
users on the network. We conclude that version rollback attacks are a significant
threat.

7 Changes to MPPE

The original encryption mechanism in Microsoft’s Point to Point Encryption
protocol (MPPE) used the same encryption keys in each direction (Client to
Server, and Server to Client). Since the bulk data encryption routine is the
RC4 stream cipher [Sch96], this created a cryptographic attack by XORing the
two streams against each other and performing standard cryptanalysis against
the result.

In the more recent version, the MPPE keys are derived from MS-CHAPv2
credentials and a unique key is used in each direction. The keys for each direction
are still derived from the same value (the Client’s NT password hash), but
differently depending on the direction.

7.1 Deriving MPPE Keys from MS-CHAPv2 Credentials

MPPE keys can be either 40 bits or 128 bits, and they can be derived from either
MS-CHAPv1 credentials or MS-CHAPv2 credentials. The original derivation

8



protocol (from MS-CHAPv1) was described in [SM98]. Briefly, the password
hash is hashed again using SHA, and then truncated. For a 40-bit key, the
SHA hash is truncated to 64 bits, and then the high-order 24 bits are set to
0xD1269E. For a 128-bit key, the SHA hash is truncated to 128 bits. This key is
used to encrypt traffic from the Client to the Server and traffic from the Server
to the Client, opening a major security vulnerability. This has been corrected
in MS-CHAPv2.

Deriving MPPE keys from MS-CHAPv2 credentials works as follows:

1. Hash the 16-byte NT password hash, the 24-byte response from the MS-
CHAPv2 exchange, and a 27-byte constant (the string “This is the MPPE
Master Key”) with SHA. Truncate to get a 16-byte master-master key.

2. Using a deterministic process, convert the master-master key to a pair of
session keys.

For 40-bit session keys, this is done as follows:

1. Hash the master-master key, 40 bytes of 0x00, an 84-byte constant and
40 bytes of 0xF2 with SHA. Truncate to get an 8-byte output.

2. Set the high-order 24 bits of 0xD1269E, resulting in a 40-bit key.

The magic constants are different, depending on whether the key is used to
encrypt traffic from the Client to the Server, or from the Server to the Client.

For 128-bit session keys, the process is as follows:

1. Hash the master-master key, 40 bytes of 0x00, an 84-byte constant (magic
constant 2 or 3), and 40 bytes of 0xF2 with SHA. Truncate to get a 16-byte
output.

7.2 Analysis

This modification means that unique keys are used in each direction, but does
not solve the serious problem of weak keys. The keys are still a function of
the password, and hence contain no more entropy than the password. Even
though the RC4 algorithm may theoretically have 128-bits of entropy, the actual
passwords used for key generation have much less. This having been said, using
different keys in each direction is still a major improvement in the protocol.

7.3 Trapdoors in the magic constants?

We are very concerned with the magic constants embedded in the key derivation
algorithm for export-weakened keys.

The protocol weakens RC4 keys to 40 bits by fixing the high bits of the
64-bit RC4 key to 0xD1269E. But this seems dangerous. It is known that, if
an adversary is allowed to choose the high bits of the RC4 key, the adversary
can force you into a weak key class for RC4 [Roo95, Wag95]. Therefore, if the
MS-CHAP designers—or the NSA export-reviewer folks—wanted to embed a

9



trapdoor in the protocol, they could exploit the presence of magic constants to
weaken RC4.

We do not know whether keys prefixed with 0xD1269E are unusually weak,
but in our preliminary statistical tests we have found some suspicious properties
of such keys that leaves us with some cause for concern. To give two examples:

• Empirical measurements show that the first few bytes of output are biased,
for keys which start with 0xD1269E. The first and second keystream bytes
take on the values 0x09 and 0x00 with probabilities 0.0054 and 0.0060,
respectively. This is noticeably higher than the 1/256 = 0.0039 probability
you’d expect from good cipher.

• The key schedule mixes some entries in the state table poorly, for this
class of keys. For instance, S[1] = 0xF8 holds with probability 0.38 ≈ 1/e,
and S[2] = 0x98 holds with a similar probability.

These statistical properties are worrisome.
Because no information is given on how the value 0xD1269E was chosen, one

has to worry that it could well be a “trapdoor choice” which forces all 40-bit
keys into some weak key class for RC4. We invite the MS-CHAP designers to
openly disclose how all magic constants were chosen and to provide concrete
assurances that those magic values don’t create any hidden trapdoors. In the
meantime, we leave it as an open question to ascertain whether RC4 is secure
when used with the fixed key-prefix 0xD1269E.

8 Attack on export-weakened key derivation

In this section we present a very serious attack on the way that exportable 40-
bit session keys are generated. This weakness is also present in MS-CHAPv1 as
well as MS-CHAPv2, but it has not been discovered until now.

The end result is that the so-called “40-bit keys” really only have an effective
strength of about 26 bits. As a result, the export-weakened protocol can be
cracked in near-realtime with only a single computer3.

We recall that the key derivation process appends 40 secret bits (generated
in some way which is irrelevant to our attack) to the fixed value 0xD1269E.
The resulting 64-bit session key is to RC4-encrypt the transmitted data. The
problem is that this process introduces no per-session salt (compare to, e.g.,
SSL), and thus can be broken with a time-space tradeoff attack.

For the remainder of this section, we assume that we can obtain a short
segment of known plaintext (40 bits should suffice) at some predictable location.
The known plaintext need not even occur at consecutive bit locations; the only
requirement is that the bit positions be predictable in advance. This seems to be

3Today’s computers seem to be able to try 216–217 keys/second, which suggests that each
key can be cracked in something like a quarter of an hour. (In lieu of an implementation,
these estimates will necessarily be very rough.) With a small cluster of computers, the cracking
performance can be greatly increased.

10



a very plausible assumption, when one considers the quantity of known headers
and other predictable data that is encrypted. Let us assume for simplicity of
description that this known plaintext occurs at the start of the keystream.

We will attack this protocol with a time-space tradeoff. The cost of a lengthy
precomputation is amortized over many sessions so that the incremental cost of
breaking each additional session key is reduced to a very low value.

A naive attacker might consider building a lookup table with 240 entries,
listing for each possible 40-bit key the value of the first 40 bits of keystream
that results. This requires a 240 precomputation, but then each subsequent
session key can be broken extremely quickly (with just a single table lookup).
However, in practice this attack is probably not very practical because it requires
240 space.

A time-space tradeoff allows us to reduce the space requirements of the naive
attack by trading off memory for additional computation. Consider Hellman’s
time-space tradeoff [Hel80]. For a n-bit key, Hellman’s tradeoff requires a 2n

precomputation and 22n/3 space, and then every subsequent session key can be
broken with just 22n/3 work. (Other tradeoffs are also possible.)

For MS-CHAP’s 40-bit keys, n = 40, and 2n/3 ≈ 26, so you get an attack
that breaks each session key with approximately 226 work. The attack requires
a 240 precomputation and 226 space, but these requirements are easily met.

This means that the export-weakened versions of MS-CHAP offer an effective
keylength of only about 26 bits or so, which is much less than the claimed 40
bits of strength. This is a deadly weakness.

9 Conclusions

Microsoft has improved PPTP to correct the major security weaknesses de-
scribed in [SM98]. However, the fundamental weakness of the authentication
and encryption protocol is that it is only as secure as the password chosen by
the user. As computers get faster and distributed attacks against password
files become more feasible, the list of bad passwords—dictionary words, words
with random capitalization, words with the addition of numbers, words with
numbers replacing letters, reversed words, acronyms, words with the addition
of punctuation—becomes larger. Since authentication and key-exchange pro-
tocols which do not allow passive dictionary attacks against the user’s pass-
word are possible—Encrypted Key Exchange [BM92, BM94] and its variants
[Jab96, Jab97, Wu98], IPSec—it seems imprudent for Microsoft to continue to
rely on the security of passwords. Our hope is that PPTP continues to see a
decline in use as IPSec becomes more prevalent.

References
[BM92] S.M. Bellovin and M. Merritt, “Encrypted Key Exchange: Password-Based

Protocols Secure Against Dictionary Attacks,” Proceedings of the IEEE Sym-
posium on Research in Security and Privacy, May 1992, pp. 72–84.

11



[BM94] S.M. Bellovin and M. Merritt, “Augmented Encrypted Key Exchange: A
Password-Based Protocol Secure Against Dictionary Attacks and Password
File Compromise,” AT&T Bell Laboratories, 1994.

[Gil98] J. Gilmore, Ed., Cracking DES. The Electronic Frontier Foundation, San
Francisco, CA, O’Reilly and Associates, 1998.

[HP+97] K. Hamzeh, G.S. Pall, W. Verthein, J. Taarud, and W.A. Little, “Point-
to-Point Tunneling Protocol,” Internet Draft, IETF, Jul 1997. http://www.
ietf.org/internet-drafts/draft-ietf-pppext-pptp-10.txt.

[Hel80] M.E. Hellman, “A cryptanalytic time-memory trade-off,” IEEE Transac-
tions on Information Theory, vol.IT-26, no.4, July 1980, p.401–406.

[Jab96] D. Jablon, “Strong Password-Only Authenticated Key Exchange,” ACM
Computer Communications Review, Oct 96, pp. 5–26.

[Jab97] D. Jablon, “Extended Password Key Exchange Protocols Immune to Dictio-
nary Attacks,” Proceedings of the Sixth Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, IEEE Computer Society, 1997,
pp. 248–255.

[L97] L0pht Heavy Industries, Inc., “A L0phtCrack Technical Rant,” Jul 1997.
http://www.l0pht.com/l0phtcrack/rant.html.

[L99] L0pht Heavy Industries, Inc, L0phtcrack, 1999, http://www.l0pht.com/
l0phtcrack/.

[Mic96a] Microsoft Corporation, Advanced Windows NT Concepts, New Rid-
ers Publishing, 1996. Relevant chapter at http://www.microsoft.com/
communications/nrpptp.htm.

[Mic96b] Microsoft Corporation, “Point-to-Point Tunneling Protocol (PPTP) Fre-
quently Asked Questions,” Jul 1996.

[Mic98a] Microsoft Corporation, “Frequently Asked Questions about Microsoft VPN
Security,” Dec 1998, http://www.microsoft.com/NTServer/commserv/
deployment/moreinfo/VPNSec_FAQ.asp

[Mic98b] Microsoft Corporation, “Microsoft Windows 95 Dial-Up Networking 1.3 Up-
grade Release Notes,” 1998, http://support.microsoft.com/support/kb/
articles/q154/0/91.asp

[Mic99] Microsoft, Corporation, “Windows 98 Dial-Up Networking Security Upgrade
Release Notes,” Feb 1999, http://support.microsoft.com/support/kb/
articles/Q189/7/71.asp.

[NIST93] National Institute of Standards and Technology, “Secure Hash Standard,”
U.S. Department of Commerce, May 1993.

[PZ98] G.S. Pall and G. Zorn, “Microsoft Point-to-Point Encryption (MPPE) Pro-
tocol,” Network Working Group, Internet Draft, IETF, Mar 1998. http:
//www.ietf.org/internet-drafts/draft-ietf-pppext-mppe-03.txt.

[Riv91] R. Rivest, “The MD4 Message Digest Algorithm,” Advances in Cryptology—
CRYPTO’90 Proceedings, Springer-Verlag, 1991, pp. 303311.

[Roo95] A. Roos, “Weak Keys in RC4,” sci.crypt post, 22 Sep 1995.

[Sim94] W. Simpson, “The Point-to-Point Protocol (PPP),” Network Working
Group, STD 51, RFC 1661, Jul 1994. ftp://ftp.isi.edu/in-notes/
rfc1661.txt.

12



[Sch96] B. Schneier, Applied Cryptography, 2nd Edition, John Wiley & Sons, 1996.

[SM98] B. Schneier and Mudge, “Cryptanalysis of Microsofts Point-to-Point Tun-
neling Protocol (PPTP),” Proceedings of the 5th ACM Conference on Com-
munications and Computer Security, ACM Press, pp. 132–141. http://www.
counterpane.com/pptp.html.

[Wag95] D. Wagner, “Re: Weak Keys in RC4,” sci.crypt post, 25 Sep 1995. http:
//www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys.

[Wu98] T. Wu, “The Secure Remote Password Protocol,” Proceedings of the 1998
Internet Society Network and Distributed System Security Symposium, Mar
1998, pp. 97–111.

[ZC98] G. Zorn and S. Cobb, “Microsoft PPP CHAP Extensions,” Network Working
Group Internet Draft, Mar 1998. http://www.ietf.org/internet-drafts/
draft-ietf-pppext-mschap-00.txt.

[Zor98a] G. Zorn, “Deriving MPPE Keys from MS-CHAP V1 Credentials,” Net-
work Working Group Internet Draft, Sep 1998. http://www.ietf.org/
internet-drafts/draft-ietf-pppext-mschapv1-keys-00.txt.

[Zor98b] G. Zorn, “Deriving MPPE Keys from MS-CHAP V2 Credentials,” Net-
work Working Group Internet Draft, Nov 1998. http://www.ietf.org/
internet-drafts/draft-ietf-pppext-mschapv2-keys-02.txt.

[Zor99] G. Zorn, “Microsoft PPP CHAP Extensions, Version 2,” Network Working
Group Internet Draft, Apr 1999. http://www.ietf.org/internet-drafts/
draft-ietf-pppext-mschap-v2-03.txt.

13


